Fusion from myoblasts to myotubes is dependent on the rolling stone gene (rost) of Drosophila.
نویسندگان
چکیده
The development and differentiation of the body wall musculature in Drosophila are accompanied by changes in gene expression and cellular architecture. We isolated a Drosophila gene, termed rolling stone (rost), which, when mutated, specifically blocks the fusion of mononucleated cells to myotubes in the body wall musculature. beta 3 tubulin, which is an early marker for the onset of mesoderm differentiation, is still expressed in these cells. Gastrulation and mesoderm formation, as well as the development of the epidermis and of the central and peripheral nervous systems, appear quite normal in homozygous rolling stone embryos. Embryonic development stops shortly before hatching in a P-element-induced mutant, as well as in 16 EMS-induced alleles. In mutant embryos, other mesodermal derivatives such as the visceral mesoderm and the dorsal vessel, develop fairly normally and defects are restricted to the body wall musculature. Myoblasts remain as single mononucleated cells, which express muscle myosin, showing that the developmental program of gene expression proceeds. These myoblasts occur at positions corresponding to the locations of dorsal, ventral and pleural muscles, showing that the gene rolling stone is involved in cell fusion, a process that is independent of cell migration in these mutants. This genetic analysis has set the stage for a molecular analysis to clarify where the rolling stone action is manifested in the fusion process and thus gives insight into the complex regulating network controlling the differentiation of the body wall musculature.
منابع مشابه
The Mesodermal Expression of rolling stone (rost) Is Essential for Myoblast Fusion in Drosophila and Encodes a Potential Transmembrane Protein
In homozygous rolling stone embryos, the fusion of myoblasts to syncytial myotubes is diminished. Nevertheless, the visceral mesoderm, the heart mesoderm, and few somatic muscles are properly formed. Thus, we postulate a central role of rolling stone for the fusion process within the somatic mesoderm. We have cloned the rolling stone gene, and the deduced protein sequence is in accordance with ...
متن کاملA positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila
In Drosophila, myoblasts are subdivided into founders and fusion-competent myoblasts (fcm) with myotubes forming through fusion of one founder and several fcm. Duf and rolling pebbles 7 (Rols7; also known as antisocial) are expressed in founders, whereas sticks and stones (SNS) is present in fcm. Duf attracts fcm toward founders and also causes translocation of Rols7 from the cytoplasm to the f...
متن کاملEssential genes for myoblast fusion in Drosophila embryogenesis
In Drosophila, as in vertebrates, each muscle is a syncytium and arises from mesodermal cells by successive fusion. This requires cell-cell recognition, alignment, formation of prefusion complexes, followed by electron-dense plaques and membrane breakdown. Because muscle development in Drosophila is rapid and well-documented, it has been possible to identify several genes essential for fusion. ...
متن کاملDrosophila Dumbfounded A Myoblast Attractant Essential for Fusion
Aggregation and fusion of myoblasts to form myotubes is essential for myogenesis in many organisms. In Drosophila the formation of syncytial myotubes is seeded by founder myoblasts. Founders fuse with clusters of fusion-competent myoblasts. Here we identify the gene dumbfounded (duf) and show that it is required for myoblast aggregation and fusion. duf encodes a member of the immunoglobulin sup...
متن کاملA New Role for Ion Channels in Myoblast Fusion
During myogenesis, proliferating myoblasts withdraw from the cell cycle and fuse to form an ordered array of large, multinucleated muscle fibers. This highly regulated process can be divided temporally into a series of complex steps: commitment to a myoblast phenotype, acquisition of fusion competence, recognition and adhesion of like myoblasts, fusion of myoblasts into multinucleated myo-tubes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 121 8 شماره
صفحات -
تاریخ انتشار 1995